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Diffraction: Real Samples

Up to this point we have been considering diffraction arising from infinitely 
large crystals that are strain free and behave like ideally imperfect 
materials ( x-rays only scattered once within a crystal)

Crystal size and strain affect the diffraction pattern

 we can learn about them from the diffraction pattern

High quality crystals such as those produced for the semiconductor 
industry are not ideally imperfect

 need a different theory to understand how they scatter x-rays

Not all materials are well ordered crystals



Crystallite Size

As the crystallites in a powder get smaller the diffraction peaks in a 
powder pattern get wider.

Consider diffraction from a crystal of thickness t and how the diffracted 
intensity varies as we move away from the exact Bragg angle

 If thickness was infinite we would only see diffraction at the Bragg angle
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Crystallite Size

Rays A, D, …, M makes angle B

Rays B, …, L makes angle 1

Rays C, …, N makes angle 2

Suppose the crystal of thickness t
has (m + 1) planes in the 
diffraction direction.
Let say  is variable with value B

that exactly satisfies Bragg’s Law:

Bd  sin2



Crystallite Size

For angle B diffracted intensity is maximum

For 1 and 2 – intensity is 0.

For angles 1 > > 2 – intensity is nonzero.

Real case Ideal case
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The Scherrer Equation

 

  .1sin2

,1sin2

2

1









mt

mt

 

.
2

sin
2

cos2

,sinsin

2121

21













 







 



t

t
Subtracting:

1 and 2 are close to B, so:

.
22

sin

,2

2121

21








 








 





 B

Thus:

B

B

B
t

t








cos

,cos
2

2 21










 



The Scherrer Equation

More exact treatment (see Warren) gives:
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 Scherrer’s formula

Suppose  = 1.54 Å, d = 1.0 Å, and  = 49o:

for crystal size of 1 mm, B = 10-5 deg.
for crystal size of 500 Å, B = 0.2 deg.

• Peak width B varies inversely with the crystallite size.

• The proportionality constant, K, is usually 0.94 and is valid for spherical 
crystals with cubic symmetry when B is taken as full width at half 
maximum (FWHM).

• The proportionality constant, K, is 0.89 for spherical crystals with cubic 
symmetry when B is taken as integral breadth.

• K sometimes is rounded up to 1.

• K might vary from 0.62 to 2.08.

Instrument broadening 
has to be subtracted



Peak Width

Full Width at Half Maximum (FWHM):

 Width of the peak at half intensity value 
between background and peak maximum 
intensity.

Integral Breadth:

 Total area under the peak divided by the 
peak height.

 Same as the width of a rectangle which 
has the same area and the same height as 
the peak

FWHM



Strain

Two types of stresses:

 microstresses – vary from one 
grain to another on a microscopic 
scale.

 macrostresses – stress is uniform 
over large distances.

Usually:

 macrostrain is uniform –
produces peak shift

 microstrain is nonuniform –
produces peak broadening

 tan22
d

d
b






Williamson-Hall Plot

Size broadening (Scherrer equation):

Strain broadening:

Convoluted broadening:
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has to be subtracted



Corrections for Instrumental Broadening

There is a link between peak width and crystallite size/strain, but other sources of 
peak broadening have to be considered when analyzing diffraction data

 Instrumental broadening:

 slit widths

 sample size

 penetration in the sample

 imperfect focusing

 unresolved 1 and 2 peaks

 or wavelengths widths where 1 and 2 peaks are resolved

To correct for instrumental broadening:

 measure the sample

 measure under the same conditions the standard with unstrained particles large enough to 
eliminate particle-size broadening



Corrections for Instrumental Broadening

Lorentzian shape:

Gaussian shape:

Voigt, Pseudo-Voigt:
 Deconvolute peaks into Gaussian and Lorentzian fractions and then subtract 

instrumental broadening.

𝐵𝑜𝑏𝑠 = 𝐵𝑠𝑖𝑧𝑒+𝐵𝑠𝑡𝑟𝑎𝑖𝑛+𝐵𝑖𝑛𝑠𝑡

𝐵𝑜𝑏𝑠 − 𝐵𝑖𝑛𝑠𝑡 = 𝐵𝑠𝑖𝑧𝑒+𝐵𝑠𝑡𝑟𝑎𝑖𝑛
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Interference Function

We calculate the diffraction peak at the exact Bragg angle B and at angles that have small 
deviations from B.

If crystal is infinite then at   B intensity = 0.

If crystal is small then at   B intensity  0. It varies with angle as a function of the 
number of unit cells along the diffraction vector (s – s0).

At deviations from B individual unit cells will scatter slightly out of phase.

Vector (s – s0)/ no longer extends to the reciprocal lattice point (RLP).
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Interference Function

(1) > B(1) for 001 and (2) > B(2) for 002

If Hhkl = H is reciprocal lattice vector then (s – s0)/  H.

Real space Reciprocal space



Interference Function

We define:

as deviation parameter

   HSS 0 



Interference Function

In order to calculate the intensity diffracted from the crystal at   B, 
the phase differences from different unit cells must be included.

For three unit vectors a1, a2 and a3:
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From the definition of the reciprocal lattice vector:



Interference Function
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Interference Function

Calculating intensity we lose phase information therefore:
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Maximum intensity at Bragg peak is F2N2

Width of the Bragg peak  1/N

N is a number of unit cells along (s - s0)



Interference Function



Crystallite Size



Perfect Crystals

The diffracted intensity calculations make use of ideally imperfect 
crystals

This is the “kinematical” theory of diffraction

The integrated intensity from a perfect crystal – large and no mosaic 
blocks – is less than that from an ideally imperfect crystal

Our consideration of Bragg peak width also has some problems. When 
we have very large perfect crystals the peak width is not zero. The 
width converges to a finite small value as the size of the crystal 
increases

We need a better theory!

Dynamical theory is used to treat diffraction in perfect crystals



Perfect Crystals

Dynamical diffraction theory is 
complicated. It includes the 
possibility of multiple scattering 
in a crystal. Diffracted beam is 
phase shifted by 90° every time 
it is diffracted within the crystal 
(this is in addition to the 180°
shift on scattering from an 
individual electron or atom)

 Scattering twice off a set of 
lattice planes K0 to K1 to K2, 
produces a diffracted beam in 
the direction of the incident 
beam but with a 180° phase 
shift. The resulting destructive 
interferences reduces the 
intensity of the beam in the 
incident direction

 This is PRIMARY EXTINCTION



Perfect Crystals

A full mathematical treatment of dynamical theory uses differential 
equations that describe the transfer of energy between the forward 
and diffracted x-ray beams.

This theory predicts that intensity from a perfect crystal with negligible 
absorption is
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where N is the number of unit cells per unit volume.

Note the intensity depends on F not F2



Perfect Crystals

The theory also predicts that the peak shape on rocking the crystal in 
the diffracted beam. The width of this rocking curve is called the Darwin 
width. Note that at the top of the curve the reflectivity is ~100%.

The width of the curve 2s is given by
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Changes in shape:
due to absorption

FWHM, 0, for Darwin curve = 2.12s

For first order reflections:
5 arcs < 0 < 20 arcs

Higher order reflections have 
considerably narrower rocking curves



First Reported:
"LiFePO4: A Novel Cathode Material for Rechargeable Batteries“,
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochimical Society Meeting Abstracts, 96-1, May, 1996, pp 73.

Excellent candidate for the cathode of rechargeable lithium 
battery that is inexpensive, nontoxic, and environmentally benign.

Structure of LiFePO4

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. 
J. Electrochem. Soc. 1997, 144, 1188

Whole Pattern Fitting - Example: LiFePO4



Cathode (LixCoO2: 0 < x < 1)
Anode (LixC6: 0 < x < 1)

Commercialized by Sony Corp. in 1991

Limits for the large scale applications:
1. Safety
2. Cost (Co)

Whole Pattern Fitting - Example: LiFePO4

•When a lithium-based cell is discharging, the 
lithium is extracted from the anode and inserted 
into the cathode.
•When the cell is charging, the reverse occurs.



Maximum entropy method (MEM)-based whole-pattern fitting of room temperature high-resolution 
synchrotron X-ray diffraction data for LiFePO4. The incident beam from the bending magnet source was 
monochromated by a double-crystal Si (111) monochromator, and the diffraction data were collected by a 
multiple-detector system with flat Ge (111) analysis crystals and scintillation counters. The wavelength 
was calibrated as 1.206353 Å by powder diffraction data from NIST SRM640c.

Whole Pattern Fitting - Example: LiFePO4



“Experimental visualization of lithium diffusion in LixFePO4”
Shin-ichi Nishimura, Genki Kobayashi, Kenji Ohoyama, Ryoji Kanno, Masatomo Yashima & Atsuo Yamada
Nature Materials 7, 707 (2008) Published online: 10 August 2008

Whole Pattern Fitting - Example: LiFePO4



Whole Pattern Fitting - Example: LiFePO4

Rietveld refinement results for LiFePO4 with neutron 
diffraction data measured at room temperature in air. 



Whole Pattern Fitting - Example: LiFePO4

X-ray diffraction patterns of a mixture of 0.6 LiFePO4 and 0.4 FePO4 recorded at 30 K steps from 298 K to 633 K with magnification of 
200 reflections. Bruker AXS D8 ADVANCE powder diffractometer was used with Co-K radiation and linear position-sensitive detector 

Vantec-1. Measurement ranges were from 15° to 100°. The measurements were conducted under a high-purity He atmosphere in an 
Anton Paar HTK 450 temperature-controlled chamber. 



Whole Pattern Fitting - Example: LiFePO4

Rietveld refinement results 
for LiFePO4 with neutron 
diffraction data measured at 
room temperature in air. 

Rietveld refinement results 
for Li0.6FePO4 using 
neutron diffraction data 
measured at 620 K in Ar.



Whole Pattern Fitting - Example: LiFePO4

Nuclear distribution of lithium calculated by the Maximum Entropy Method (MEM) using neutron powder diffraction data 
measured for Li0.6FePO4 at 620 K.

(a) Three-dimensional Li nuclear density data shown as blue contours. The brown octahedra represent FeO6 and the purple tetrahedra represent 
PO4 units.

(b) Two-dimensional contour map sliced on the (001) plane at z = 0.5; lithium delocalizes along the curved one-dimensional chain along the [010] 
direction, whereas Fe, P and O remain near their original positions.

(c) Two-dimensional contour map sliced on the (010) plane at y = 0; all atoms remain near their original positions.


